Structural conservation in the template/pseudoknot domain of vertebrate telomerase RNA from teleost fish to human.

نویسندگان

  • Yaqiang Wang
  • Joseph D Yesselman
  • Qi Zhang
  • Mijeong Kang
  • Juli Feigon
چکیده

Telomerase is an RNA-protein complex that includes a unique reverse transcriptase that catalyzes the addition of single-stranded telomere DNA repeats onto the 3' ends of linear chromosomes using an integral telomerase RNA (TR) template. Vertebrate TR contains the template/pseudoknot (t/PK) and CR4/5 domains required for telomerase activity in vitro. All vertebrate pseudoknots include two subdomains: P2ab (helices P2a and P2b with a 5/6-nt internal loop) and the minimal pseudoknot (P2b-P3 and associated loops). A helical extension of P2a, P2a.1, is specific to mammalian TR. Using NMR, we investigated the structures of the full-length TR pseudoknot and isolated subdomains in Oryzias latipes (Japanese medaka fish), which has the smallest vertebrate TR identified to date. We determined the solution NMR structure and studied the dynamics of medaka P2ab, and identified all base pairs and tertiary interactions in the minimal pseudoknot. Despite differences in length and sequence, the structure of medaka P2ab is more similar to human P2ab than predicted, and the medaka minimal pseudoknot has the same tertiary interactions as the human pseudoknot. Significantly, although P2a.1 is not predicted to form in teleost fish, we find that it forms in the full-length pseudoknot via an unexpected hairpin. Model structures of the subdomains are combined to generate a model of t/PK. These results provide evidence that the architecture for the vertebrate t/PK is conserved from teleost fish to human. The organization of the t/PK on telomerase reverse transcriptase for medaka and human is modeled based on the cryoEM structure of Tetrahymena telomerase, providing insight into function.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Structure and sequence elements of the CR4/5 domain of medaka telomerase RNA important for telomerase function

Telomerase is a unique reverse transcriptase that maintains the 3' ends of eukaryotic chromosomes by adding tandem telomeric repeats. The RNA subunit (TR) of vertebrate telomerase provides a template for reverse transcription, contained within the conserved template/pseudoknot domain, and a conserved regions 4 and 5 (CR4/5) domain, all essential for catalytic activity. We report the nuclear mag...

متن کامل

Identification of Telomerase RNAs from Filamentous Fungi Reveals Conservation with Vertebrates and Yeasts

Telomeres are the nucleoprotein complexes at eukaryotic chromosomal ends. Telomeric DNA is synthesized by the ribonucleoprotein telomerase, which comprises a telomerase reverse transcriptase (TERT) and a telomerase RNA (TER). TER contains a template for telomeric DNA synthesis. Filamentous fungi possess extremely short and tightly regulated telomeres. Although TERT is well conserved between mos...

متن کامل

Telomerase: an RNP enzyme synthesizes DNA.

Telomerase is a eukaryotic ribonucleoprotein (RNP) whose specialized reverse transcriptase action performs de novo synthesis of one strand of telomeric DNA. The resulting telomerase-mediated elongation of telomeres, which are the protective end-caps for eukaryotic chromosomes, counterbalances the inevitable attrition from incomplete DNA replication and nuclease action. The telomerase strategy t...

متن کامل

Structure and folding of the Tetrahymena telomerase RNA pseudoknot

Telomerase maintains telomere length at the ends of linear chromosomes using an integral telomerase RNA (TER) and telomerase reverse transcriptase (TERT). An essential part of TER is the template/pseudoknot domain (t/PK) which includes the template, for adding telomeric repeats, template boundary element (TBE), and pseudoknot, enclosed in a circle by stem 1. The Tetrahymena telomerase holoenzym...

متن کامل

Refined secondary-structure models of the core of yeast and human telomerase RNAs directed by SHAPE.

Telomerase catalyzes the addition of nucleotides to the ends of chromosomes to complete genomic DNA replication in eukaryotes and is implicated in multiple diseases, including most cancers. The core enzyme is composed of a reverse transcriptase and an RNA subunit, which provides the template for DNA synthesis. Despite extensive divergence at the sequence level, telomerase RNAs share several str...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 113 35  شماره 

صفحات  -

تاریخ انتشار 2016